Dualizing Complex of the Incidence Algebra of a Finite Regular Cell Complex

نویسنده

  • KOHJI YANAGAWA
چکیده

Let Σ be a finite regular cell complex with ∅ ∈ Σ, and regard it as a poset (i.e., partially ordered set) by inclusion. Let R be the incidence algebra of the poset Σ over a field k. Corresponding to the Verdier duality for constructible sheaves on Σ, we have a dualizing complex ω ∈ Db(modR⊗kR) giving a duality functor from Db(modR) to itself. This duality is somewhat analogous to the Serre duality for projective schemes (∅ ∈ Σ plays a similar role to that of “irrelevant ideals”). If H(ω) 6= 0 for exactly one i, then the underlying topological space of Σ is Cohen-Macaulay (in the sense of the Stanley-Reisner ring theory). The converse also holds if Σ is a meet-semilattice as a poset (e.g., Σ is a simplicial complex). R is always a Koszul ring with R ∼= R. The relation between the Koszul duality for R and the Verdier duality is discussed. This result is a variant of a theorem of Vybornov.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIGID DUALIZING COMPLEXES

Let $X$ be a sufficiently nice scheme. We survey some recent progress on dualizing complexes. It turns out that a complex in $kinj X$ is dualizing if and only if tensor product with it induces an equivalence of categories from Murfet's new category $kmpr X$ to the category $kinj X$. In these terms, it becomes interesting to wonder how to glue such equivalences.

متن کامل

On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$

We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...

متن کامل

Rigid Dualizing Complexes on Schemes

In this paper we present a new approach to Grothendieck duality on schemes. Our approach is based on the idea of rigid dualizing complexes, which was introduced by Van den Bergh in the context of noncommutative algebraic geometry. We obtain most of the important features of Grothendieck duality, yet manage to avoid lengthy and difficult compatibility verifications. Our results apply to finite t...

متن کامل

Strong Topological Regularity and Weak Regularity of Banach Algebras

In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...

متن کامل

Characterizing Local Rings via Homological Dimensions and Regular Sequences Shokrollah Salarian, Sean Sather-wagstaff, and Siamak Yassemi

Let (R, m) be a Noetherian local ring of depth d and C a semidualizing R-complex. Let M be a finite R-module and t an integer between 0 and d. If GC -dimension of M/aM is finite for all ideals a generated by an R-regular sequence of length at most d − t then either GC -dimension of M is at most t or C is a dualizing complex. Analogous results for other homological dimensions are also given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004